教育到達目標と評価のイメージ

機械工学実験(2) 材料力学の確認実験:中心に円孔を有する薄板の引張

	これまでに開講されている科目との相関	コア	
実験体験 による 評価(30%)	材料力学の基礎(5%) 材料評価(5%)		を関連する科目 応力解析学 材料強度学
アクティブ ラーニング (70%)		レポート(60%) 応力集中係数を求めることができる。 内部応力の分布を理解して設計できる。 主応力と主軸を求めることができる。	発展:モールの応力円の式を導出できる. (10%)

教育到達目標と評価のイメージ

機械工学実験(2) FEM演習

	これまでに開講されている科目との相関	コア	
実習に よる評価 (45%)	材料力学の基礎情報リテラシー	基礎: (30%) FEMに必要なデータを作成できるようにする。 計算結果の内容を理解知る。	発展:(15%) エラーに対処できるようにする。 自動メッシュ機能により多要素問題 ができるようにする。
レポートに よる評価 (40%)	材料力学の基礎 材料力学(1)(2)(3) 情報リテラシー	基礎: (30%) 計算に必要なデータをレポートに表現 できるようにする。 計算結果を理解し、レポートに集計・表 現できるようにする。	発展: (10%) 計算誤差について理解する。 応力集中について理解し、設計 に生かせるようにする。
アクティブ ラーニン グ (15%)		レポート: (10%) テキスト中の自由課題をFEM計算 し、計算結果を評価する。	レポート: (5%) 自発的に問題を提起しFEM解析をす 最適設計を提案する。